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a b s t r a c t

In this paper we obtain the analytical solution for a semi-infinite solidifying alloy. Thus, a three-phase
problem including solid, solid–liquid, and liquid phases is analytically solved. Linearization of the heat
conduction equation for an alloy is based on the method proposed in our recent papers.
Note that the method does not allow one to solve the problem of solidification of an alloy with the given
function k(T) (liquid fraction). The dependence k(T) is determined from the condition of linearization of
the heat conduction equation within the mush zone.
The analytical solution presented is an important test example for analysis of the numerical schemes
used for systems with moving boundaries, e.g., for programs simulating vacuum arc remelting.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The general methodology of obtaining the analytical solution
for an alloy with a finite crystallization range used in this paper
is described in recent works [1,2], and we will consider it below
in detail. Some solutions see in [3].

In order to obtain an analytical solution, we reformulate the
equation of energy conservation in the mush zone in terms of
the total enthalpy H(T). The key idea of papers [1,2] consists of
the requirement of constancy of the temperature conductivity in
the mush zone. From this condition, we can find the volume frac-
tion of the liquid phase k(T), which allows one to linearize the ini-
tial heat conduction equation. Thus, the method of obtaining the
analytical solution for the heat conduction equation with a mush
zone consists of the following:

1. We write the heat conduction equation for the total enthalpy of
the system, including the evolution of the phase transition heat.

2. We demand that the temperature conductivity in the solid,
solid–liquid (mush), and liquid phases is constant.

3. We write the condition of the constancy of the temperature
conductivity in the mush zone a(T) = asl = const in the form of
a differential equation to obtain the temperature dependence
of the liquid phase quantity k = k(T) with the condition
k(Tl) = 1 (Tl is liquidus temperature).
ll rights reserved.
4. We solve the differential equation obtained and find the explicit
form of the function k = k(T,asl).

5. We impose an additional condition k(Ts,asl) = k0 (Ts is the soli-
dus temperature) on the function k = k(T,asl). For k0 = 0, we have
a noneutectic alloy, while, for k0 – 0, it is eutectic. From this
condition, we find the value of the temperature conductivity
in the mush zone asl.

6. After that, we obtain a parabolic equation of the heat conduc-
tion equation type with piecewise constant coefficient of heat
conductivity, which are performed by temperature conductivity
a. The solution of such an equation can be obtained in a closed
analytical form.

Note that the method does not allow one to solve the problem
of solidification of an alloy with the given function k(T). The depen-
dence k(T) is determined from the condition of linearization of the
heat conduction equation within the mush zone.

2. Linearization of the equation for enthalpy

In this paper, we consider the general method for linearization
of the equation for the total enthalpy described briefly in the Intro-
duction and in papers [1,2]. In this case, the total enthalpy of the
system can be in the form [3]

HðTÞ ¼ ½1� kðTÞ�qsCsT þ kðTÞql½ClT þ L� ð1Þ

where Cs and Cl are the specific heat capacities in the solid and
liquid phases, respectively; L is the latent heat; qs and ql are the
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Nomenclature

C heat capacity (J kg�1 K�1)
H enthalpy (J m�3)
k solidification constant (m s�1/2)
L latent heat (J kg�1)
T temperature (K)
t time (s)
v velocity (m s�1)
X isotherm position (m)
x coordinate (m)

Greeks
a temperature conductivity (m2 s�1)
c coefficient (m s�1/2)
j heat conductivity (W m�1 K�1)

k liquid fraction
�k averaged liquid fraction
q density (kg m�3)
n self-similar variable (m2 s�1)

Subscripts
L liquidus
l liquid phase
S solidus
s solid phase
sl solid–liquid (mushy) zone
out outer boundary
init initial
0 eutectic alloy
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densities in the solid and liquid phases, respectively; and T is the
temperature. Since we consider effects related to the difference of
the densities in the solid and liquid phases, the equation of balance
for the enthalpy can include a convective term taking into account
the relative movement of the phases; therefore, we write in the
general form [4]

oH
ot
þ vðtÞ oH

ox
¼ o

ox
aðHÞ oH

ox

� �
ð2Þ

where v is the velocity, t is the time, x is the coordinate along the
ingot, and a is the temperature conductivity. In the following, we
will assume [5] that only the liquid moves; i.e. the velocity of the
solid phase vs = 0, while the velocity of the liquid phase vl = v. There
are two cases:

When qs > ql, the solid metal shrinks and the liquid moves
toward the solidification front to eliminate the shrinkage; i.e.
v < 0 (we choose the beginning of the coordinates at the bottom
of ingot x = 0).
When qs < ql, the solid phase expands and the liquid moves
away from the solidification front; i.e. v > 0.

We will find the velocity of the liquid phase movement from the
law of mass conservation. Let the point x = n(t) be the location of a
fixed material point far from the liquidus isotherm (solidification
front) in the liquid phase. The total mass per unit of the transverse
section area inside the interval 0 6 x 6 n(t) is given by the expression

MnðtÞ ¼ qsXsðtÞ þ �qsl½XlðtÞ � XsðtÞ� þ ql½nðtÞ � XlðtÞ� ð3Þ

where Xs,l(t) is the location of the solidus/liquidus fronts, and �qsl is
the average density of the metal in the mush zone, which is defined
by the expression

�qsl ¼ qs þ ðql � qsÞ�k ¼ qs þ
ql � qs

TL � TS

Z TL

TS

kðTÞdT ð4Þ

In what follows, we will determine the explicit form of the function
k(T) and calculate the integral �k. Since v(t) = dn(t)/dt, from Eq. (3)
and the law of mass conservation dMn(t)/dt = 0, one can easily ob-
tain the expression for the velocity of the liquid phase in the form

vðtÞ ¼ 1� qs

ql

� �
�k

dXSðtÞ
dt

� ð1� �kÞdXLðtÞ
dt

� �
ð5Þ

We will present the heat conductivity in the mush zone in the form

jðTÞ ¼ ½1� kðTÞ�js þ kðTÞjl ð6Þ

where js, l are the heat conductivity in solid/liquid phase. The heat
conduction equations linearized by the requirement that the
thermal diffusion (temperature conductivity) in the mush zone is
constant, i.e. by the following condition:

a ¼ j
dH
dT

¼ asl ¼ const ð7Þ

With trivial conversions we obtain the equation for k(T)

½1þ pT�dkðTÞ
dT

þ akðTÞ þ b ¼ 0 ð8Þ

where we introduced the notations (and the ratio of densities in the
liquid and solid phases l = ql/qs [5]):

a ¼ aslqlðCl � Cs=lÞ � ðjl � jsÞ
aslqlL

; ð9Þ

b ¼ aslqlCs=l� js

aslqlL
; ð10Þ

p ¼ Cl � Cs=l
L

: ð11Þ

Furthermore, we require satisfaction of the condition in the liquidus
point

kðTlÞ ¼ 1: ð12Þ

The solution of Eqs. (8) and (12) is given by the expression

kðTÞ ¼ �b
a
þ aþ b

a
1þ pTl

1þ pT

� �a
p

: ð13Þ

Now, it is necessary to define the additional condition for the func-
tion k(T) at the solidus (or eutectic) temperature

kðTsÞ ¼
0
k0–0

�
ð14Þ

From this additional equation, we obtain the constant asl. Now,
knowing the explicit form of the function k(T), we can calculate �k:

�k ¼ KðTLÞ �KðTSÞ
TL � TS

; ð15Þ

where

KðxÞ ¼ � a
b

x� ðaþ bÞð1þ pxÞ
aða� pÞ

1þ pTL

1þ px

� �a
p

: ð16Þ
3. An example of the analytical solution

When we have linearized the equation for enthalpy, we can inves-
tigate particular systems and obtain analytical solutions. In paper [2],
the problem of the solidification of a finite one-dimensional array with
the upper boundary (intake) moving according to the rule XtðtÞ ¼ kt

ffiffi
t
p

was considered (where kt is a known constant). In this paper, we con-
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sider a half-infinite system. Solidifying of a semi-infinite slab (06 x <
1), initially liquid at a uniform temperature Tinit > TL, by imposing a
constant temperature Tout < TS on the face x = 0. The problem for the
total enthalpy can be formulated in the following way:

oH
ot
þ vðtÞ oH

ox
¼ o

ox
aðHÞ oH

ox

� �
; ð17Þ

Hðx > 0; t ¼ 0Þ ¼ Hinit ¼ HðTinitÞ; ð18Þ
Hjx¼0 ¼ Hout ¼ HðToutÞ; t P 0; ð19Þ
Hjx!1 ¼ Hinit ¼ HðTinitÞ: ð20Þ

Solution of these equations with piecewise constant function a (H)
can be easy obtained [6]. For this, we divide the whole domain
[0,1) into the intervals [0,XS), [XS,XL] and (XL,1). Furthermore, we
assume that (the so called self-similar solution):

XSðtÞ ¼ kS

ffiffi
t
p
; XLðtÞ ¼ kL

ffiffi
t
p
; ð21Þ

where kS and kL are constants. Let us introduce the following
notation:

c ¼ l� 1
l
½�kkS þ ð1� �kÞkL�; vðtÞ ¼ c

2
ffiffi
t
p : ð22Þ

Then, after introduction of the new variable n = x2/t, Eq. (17) can be
rewritten in the form of ordinary differential equation

d2H

dn2 ¼ �
1
4

1
aðHÞ þ

2
n
� c

aðHÞ
ffiffiffi
n
p

� �
dH
dn

: ð23Þ

Solutions of this equation on the intervals have the form [7]

Hðx; tÞ ¼ Hout þ ðHs � HoutÞ
erf x

2
ffiffiffiffiffi
ast
p

� 	

erf kS
2
ffiffiffiffi
as
p

� 	 ; x 2 ½0;XSÞ; ð24Þ

Hðx; tÞ ¼
ðHl � HsÞerf x�c

ffiffi
t
p

2
ffiffiffiffiffi
asl t
p

� �
þ Hserf kL�c

2
ffiffiffiffi
asl
p

� 	
� Hlerf kS�c

2
ffiffiffiffi
asl
p

� 	

erf kL�c
2
ffiffiffiffi
asl
p

� 	
� erf kS�c

2
ffiffiffiffi
asl
p

� 	 ;

x 2 ½XS;XL� ð25Þ

Hðx; tÞ ¼ Hinit � ðHinit � HlÞ
erfc x�c

ffiffi
t
p

2
ffiffiffiffiffi
al t
p

� �

erfc kL�c
2
ffiffiffi
al
p

� 	 ; x 2 ðXL;1Þ ð26Þ

Using two conditions (note that, in the case qs – ql, these conditions
are approximate [5]) on the interval’s boundaries

as
oH
ox






x¼XS�0

¼ asl
oH
ox






x¼XSþ0

þ qsk0L
dXSðtÞ

dt
; ð27Þ
asl
oH
ox






x¼XL�0

¼ al
oH
ox






x¼XLþ0

; ð28Þ

we obtain two equations to determine kS and kL:

ffiffiffiffiffi
as
p ðHs � HoutÞ exp � ðkS�cÞ2

4as

� 	

erf kS�c
2
ffiffiffiffi
as
p

� 	 �
ffiffiffiffiffiffi
asl
p ðHl � HsÞ exp � ðkS�cÞ2

4asl

� 	

erf kL�c
2
ffiffiffiffi
asl
p

� 	
� erf kS�c

2
ffiffiffiffi
asl
p

� 	

¼
ffiffiffiffi
p
p

2
qsk0LkS; ð29Þ

ffiffiffiffiffiffi
asl
p ðHl � HsÞ exp � ðkL�cÞ2

4asl

� 	

erf kL�c
2
ffiffiffiffi
asl
p

� 	
� erf kS�c

2
ffiffiffiffi
asl
p

� 	 �
ffiffiffiffiffi
al
p ðHinit � HlÞ exp � ðkL�cÞ2

4al

� 	

erfc kL�c
2
ffiffiffi
al
p

� 	
¼ 0: ð30Þ

These equations could be solved numerically.

4. Conclusion

In this paper, we obtained the analytical solution for a semi-infi-
nite volume of binary alloy. That is, the analytical solution for the
three-phase problem including solid, solid–liquid, and liquid phases
has been obtained. Linearization of the heat conduction equation for
the alloy is based on the method proposed in papers [1,2].

The presented analytical solution of the problem is an important
test example for analysis of numerical schemes used for system
with moveable boundaries, e.g., for programs modeling vacuum
arc remelting [8].
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